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BACKGROUND: The risk of contracting Lyme disease (LD) can vary spatially because of spatial heterogeneity in risk factors such as social-behavior
and exposure to ecological risk factors. Integrating these risk factors to inform decision-making should therefore increase the effectiveness of mitiga-
tion interventions.

OBJECTIVES: The objective of this study was to develop an integrated social-behavioral and ecological risk-mapping approach to identify priority
areas for LD interventions.

METHODS: The study was conducted in the Montérégie region of Southern Quebec, Canada, where LD is a newly endemic disease. Spatial variation
in LD knowledge, risk perceptions, and behaviors in the population were measured using web survey data collected in 2012. These data were used as
a proxy for the social-behavioral component of risk. Tick vector population densities were measured in the environment during field surveillance
from 2007 to 2012 to provide an index of the ecological component of risk. Social-behavioral and ecological components of risk were combined with
human population density to create integrated risk maps. Map predictions were validated by testing the association between high-risk areas and the
current spatial distribution of human LD cases.

RESULTS: Social-behavioral and ecological components of LD risk had markedly different distributions within the study region, suggesting that both
factors should be considered for locally adapted interventions. The occurrence of human LD cases in a municipality was positively associated with
tick density (p<0:01) but was not significantly associated with social-behavioral risk.

CONCLUSION: This study is an applied demonstration of how integrated social-behavioral and ecological risk maps can be created to assist decision-
making. Social survey data are a valuable but underutilized source of information for understanding regional variation in LD exposure, and integrating
this information into risk maps provides a novel approach for prioritizing and adapting interventions to the local characteristics of target populations.
https://doi.org/10.1289/EHP1943

Introduction
In Canada and elsewhere in North America, Lyme disease (LD)
is caused by the spirochete Borrelia burgdorferi sensu stricto (for
simplicity, B. burgdorferi will be used hereafter) and is transmit-
ted by the blacklegged tick Ixodes scapularis in northeastern and
midwestern North America (Burgdorfer et al. 1982). LD has
three clinical phases: early LD in which most patients develop a
characteristic erythema migrans (EM) skin rash along with non-
specific influenza-like symptoms; early disseminated LD with
one or more manifestations of multiple EM lesions or neurologi-
cal or cardiac problems; and late LD with neurological or arthritic
manifestations (Wormser et al. 2006). The earlier antibiotic treat-
ment is started, the more rapid and successful is patient recovery
and the lower the impact on patients, their families, and the
healthcare system (Wormser et al. 2016).

The increasing risk of LD in Canada is driven by the expand-
ing geographic range of the tick vector I. scapularis in eastern
and central Canada (Bouchard et al. 2015). The incidence of
human LD cases has been increasing in southern parts of the
country, with 987 cases reported in 2016 (PHAC 2017) compared
to 338 cases in 2012, 682 cases in 2013, 522 cases in 2014, and
917 cases in 2015. In the province of Quebec, LD risk was first
confirmed in the Montérégie region in 2008 (Bouchard et al.
2011; Ogden et al. 2008b, 2010), and now human LD cases are
more frequently being reported in this region, reaching around 50
cases reported per year since 2013 compared to 13 cases in 2012
(MSSS 2016a).

There is no LD vaccine, and preventive actions by public
health organizations have focused on public health campaigns
aimed at communicating information about a) symptoms of LD
so that the public seeks medical advice when symptoms of infec-
tion are observed; and b) measures to prevent LD infection, such
as personal protection strategies and control of ticks in the envi-
ronment (Ogden et al. 2015). LD preventive strategies include
tick bite prevention measures such as wearing protective cloth-
ing, using insect repellent, and checking for and promptly remov-
ing ticks. Tick control interventions consist of the application of
acaricides to vegetation and management of tick habitat through
landscaping (reviewed in Piesman and Eisen 2008).

The risk of acquiring LD generally correlates positively with
the density of host-seeking infected ticks in the environment.
This is the product of tick density and the prevalence of infection
in the ticks; both of which are spatially heterogeneous at a range
of spatial scales (Pepin et al. 2012). This ecological risk for LD is
spatially heterogeneous, and the pattern of LD emergence and
spread in Canada is shaped by key ecological drivers affecting
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the geographic range and population dynamics of ticks and the dy-
namics of B. burgdorferi infection in ticks. The spatial distribution
and local dynamics of I. scapularis and B. burgdorferi reflect sea-
sonal and annual dispersal of ticks by animal hosts (Bouchard et al.
2013a, 2013b; Ogden et al. 2008a; Scott et al. 2008, 2012), meteor-
ological and climatic conditions and climate warming that affect
tick population survival (Leighton et al. 2012; Ogden et al. 2014),
habitat suitability for tick hosts (Bouchard 2013; Bouchard et al.
2013a, 2013b; Lindsay et al. 1998, 1999; Ogden et al. 2006),
B. burgdorferi reservoir host abundance (e.g., the white-footed
mouse, Peromyscus leucopus) (Bouchard et al. 2011; Rogic et al.
2013; Roy-Dufresne et al. 2013), and other aspects of the host com-
munity structure, such as biodiversity, that influence B. burgdor-
feri transmission cycles (Bouchard et al. 2013a; Ogden and Tsao
2009;Werden et al. 2014).

The extent to which ecological risk factors influence the risk of
people contracting LD also depends on factors that increase human
exposure to infected ticks, such as location of residence and conse-
quent local or peri-domestic LD risk exposure (Connally et al.
2009; Zeman et al. 2015), people’s occupations, and where they
undertake their leisure activities (Quine et al. 2011). Preventive
communication can be targeted to known populations with occupa-
tions or leisure activities leading to higher risk of exposure to
infected ticks (Quine et al. 2011). A significant challenge that
remains, however, is effectively communicating risk to the general
public living in risk areas in a way that results in adoption of pre-
ventive behaviors (Connally et al. 2009; Cromley et al. 1998;
Dister et al. 1997; Finch et al. 2014).

Many factors influence the adoption of preventive behav-
iors toward LD in the general population. Both knowledge and
risk perception about LD have been associated with the degree
of adoption of individual preventive behaviors in Canada
(Aenishaenslin 2014, 2015a), the United States (Brewer et al.
2004; Hallman et al. 1995; Herrington et al. 1997, 2004; Hook et al.
2015; Valente et al. 2015), and Europe (Beaujean et al. 2013a,
2013b). Behaviors, influenced by knowledge and risk perception,
are key risk factors that can be changed by appropriate risk com-
munication. Therefore, public knowledge and risk perception of
the disease should be considered in the design of regionally tar-
geted prevention and control strategies. However, information
about regional variation in this social-behavioral component of risk
is rarely available to public health decision-makers, and its interac-
tion with regional ecological risk factors in determining the geo-
graphic pattern of LD risk has not been assessed.

Objectives
The objective of this study was to develop a novel risk-mapping
method for LD, integrating both social-behavioral and ecological
risk factors in order to identify priority areas for LD interven-
tions. To do so, we combined spatially explicit data on LD
knowledge, risk perception, and preventive behaviors derived
from a web survey conducted in 2012 in the Montérégie region
of southern Quebec with annual surveillance data on ticks col-
lected in the environment across the same region from 2007–
2012. We then used these combined data to generate integrated
LD risk maps and evaluated their ability to predict the spatial pat-
tern of human LD cases at the municipal scale across the region.
We use here the climate change adaptation terminology (Cardona
et al. 2012) to define the risk of LD in the population investigated
as the product of the population exposure to the ecological risk
factor and their vulnerability (in this case, the capacity of the
population to adopt LD preventive behaviors: the social-
behavioral risk factor component).

Methods

Study Area
Montérégie is a region of southwestern Quebec with a population
of ∼ 1,540,000 (http://www.stat.gouv.qc.ca/statistiques/profils/
region_00/region_00.htm) and an area of 11,112 km2. Two geo-
graphic subunits were used to explore, describe, and analyze the
data: a) the local health unit (Centre intégré de santé et de services
sociaux; CISSS); and b) the census subdivision (CSD), with each
CSD corresponding roughly to a single municipality. In 2012,
Montérégie region was made up of 179 CSDs grouped in 4 local
health units: CISSS Montérégie-Est (comprising the northeastern
part of the Montérégie region), CISSS Montérégie-Centre (com-
prising the central part of the Montérégie region from the head
of Lake Champlain and following the Richelieu river valley),
CISSS Montérégie-Ouest (comprising the southwestern part of the
Montérégie region), and CISSS Estrie (the southeastern part of
the Montérégie region, which was subsequently incorporated into
the neighboring Estrie region in April 2015).

Social-Behavioral Risk Factors
Data on LD knowledge, risk perception, and preventive behaviors
were collected using a cross-sectional survey of 401 respondents
conducted in Montérégie in 2012. The respondents were selected
randomly from a panel administered by the survey firm Leger
(http://leger360.com/en-ca/home). The sample was representative
of the entire study region in terms of sociodemographic factors,
including gender, age, education, income, and population size
within the region. Questions were designed to measure levels of
knowledge about LD, risk perception, and adoption of specific
individual preventive behaviors. Further details on the survey
design and administration, including the full questionnaire, can
be found elsewhere (Aenishaenslin et al. 2014, 2015a). The sur-
vey was reviewed by the ethics committee for health research of
the University of Montreal (Comité d’éthique de la santé,
CERES, certificate number 12-050-CERES-D), and informed
consent was obtained from all respondents.

Our risk maps were derived from three index scores com-
puted from the survey data at the respondent level using meth-
ods described previously (for details on the questionnaire that
was used for data collection, the scores, and their distribution,
see Aenishaenslin et al. 2014, 2015a). The index scores were: a
global preventive behavior score (GPB), a global knowledge
score (GK), and a global risk perception score (GRP). The
GPB represents a measure of the level of adoption of the three
most commonly recommended preventive behaviors (i.e., per-
forming regular tick checks, wearing protective clothing, and
using tick repellents). The GPB score is 2 (high) if the respond-
ent often or always applied two of the three preventive behav-
iors, 1 (moderate) if the respondent often or always applied one
of the three behaviors, and 0 (nil) when preventive behaviors
were not applied. The GK score is calculated as the sum of four
knowledge questions about a) LD transmission, b) early symp-
toms, c) treatment, and d) the location of risk regions. The score
ranges from 0 to 4, corresponding to the number of correct
answers. Participants who declared that they had never heard of
LD before the survey were automatically given a score of 0. The
GRP score is the mean of four risk perception variables measured
using Likert scales from 1 to 5 in the questionnaire: perceived se-
verity of LD, perceived individual susceptibility to LD, perceived
regional susceptibility to LD, and feeling of worry. The location of
residence for each respondent was geocoded to their six-digit
postal code to produce data point maps for the global index scores.
The postal code conversion file of Statistics Canada was used to
determine the centroid of each postal code.
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Ecological Risk Factors
We used active field surveillance data collected from 2007 to
2012 to estimate the density of I. scapularis tick populations in
the Montérégie region. The observed tick density in field sur-
veys provides a measure of ecological risk related to factors
such as host abundance and diversity, climate conditions, and
habitat-specific risk factors that determine tick density and dis-
tribution. Active field surveillance involves collecting ticks
using a standardized drag sampling method (trailing a 1-m2

square of white flannel cloth for at least three person-hours per
site). Field surveillance was carried out at 183 different sites
from 2007 to 2012, with each site visited at least once during
this period. Tick sampling was carried out between May and
October, encompassing the period of year when weather condi-
tions are most favorable for tick activity. There was a total of
378 site visits, of which 104 sites were revisited two or more
times (56.8% of the sites), and 79 sites were visited only once.
Sampling sites were selected among suitable forested habitat in
the target CSD based on the following criteria: deciduous
(maple or mixed deciduous) woodland of minimal dimensions
of 200 m×200 m, ease of access, and owner authorization. Most
of these sites were private woodlots. In 2007–2008, the sites were
visited one to three times per year. More details on the selection of
sites, sampling method, and inclusion criteria for the active field
surveillance and revisits can be found elsewhere (Bouchard et al.
2011, 2015; Ogden et al. 2010). The geolocation of each field site
for analyses was the centroid of the sampling plot geolocated
using a handheld Global Positioning System device.

The proportion of sites with blacklegged ticks and the density
of ticks at these sites increased from 2007 (Bouchard et al. 2011)
to 2012 (Ogden et al. 2014). To obtain a standardized tick abun-
dance index for all sites that could be compared to the 2012
survey data, we modeled the increase in tick numbers from
2007–2012 and removed this temporal trend. In this model, the
outcome variable was the log count of nymphs and adults com-
bined at each site visit, and an identifier number for each site was
included as a random effect to account for clustering of data

within a site. Year of sampling was included as a categorical fixed
effect. Month of sampling was not included in the model because
the outcome variable did not distinguish between questing nymphs
and questing adults, which are mostly active in spring months
for nymphs and in the end of summer to fall months for adults in
our study region. Sampling effort (area covered by drag sampling
at each site visit) was included as an offset in our model. We pro-
duced a data point map based on each site location and the value of
predicted tick density (PTD) per site as the measure used to inter-
polate the study area tick density as described below.

Human Population at Risk
The density of the human population at risk in each CSD was cal-
culated based on the area of the CSD and the human population
from the 2011 census carried out by Statistics Canada (http://
www12.statcan.gc.ca/census-recensement/index-eng.cfm). The
human population density measure was geolocated to the CSD
centroid for interpolating population density for over the study area
as described below.

Geoprocessing, Standardization, and Construction of Spatial
Data Layers for Social-Behavioral and Ecological Risk
Factors
In order to objectively compare and integrate data layers, all vari-
ables were first standardized by subtracting the mean and divid-
ing by the standard deviation (SD) to obtain mean= 0 and SD=1
(Quinn and Keough 2002). This resulted in a common scale
without units for each variable. All mapping and geospatial meth-
ods were performed in ArcGIS (version 10.2; Esri) using the
Statistics Canada Lambert projection and the North American
Datum (NAD) 1983 datum.

We produced a standardized interpolated surface for a) the
three social index scores (i.e., GPB, GK, GRP) given the resident
locations of survey participants; b) the density of the population
at risk (per km2) given the CSD centroids; and c) the predicted
value of the density of ticks given the locations of active

Figure 1. Conceptual structure for the integration of social-behavioral and ecological risk to adapt local responses to Lyme disease risk.
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surveillance sites (PTD). GPB was used to represent the social-
behavioral risk of the population in analyses because we assume
that overall preventive behaviors are a consequence of each indi-
vidual’s level of knowledge (represented by GK) and risk percep-
tion (represented by GRP). Maps of GK and GRP are presented
for comparison purposes.

Interpolation has been used in other studies of vector-borne dis-
eases that predict surfaces for ecological variables (Bhunia et al.
2013; Epp et al. 2011; Healy et al. 2014). The ability of interpo-
lated surfaces to represent the underlying variable in the study area
depends on the assumption that the variable is spatially correlated.
No significant global spatial autocorrelation was found, but signifi-
cant local spatial autocorrelation was found for each social-
behavioral risk factor (Figures S1 to S3). Interpolation was derived
using the inverse distance weighting (IDW) method, which assigns
a greater weight to nearby points than to distant points (resolution
of 5 km2, power of 2, number of surrounding points = 12, using a
variable search radius, low-pass filter, and cubic convolution dis-
play). We set the search neighborhood for the IDW at a fixed num-
ber of points (i.e., 12) because given the uneven spatial distribution
of respondents, a fixed-distance approach would have led to too
many respondents driving the algorithm in densely surveyed urban
areas and too few respondents driving the algorithm in sparsely
surveyed rural areas. Furthermore, the mean search radius for 12-
respondent neighborhoods given all respondents in the study area
approximated the distance of the detected local spatial autocorrela-
tion in the respondent data. To validate our IDW interpolation
parameterizations, we used cross-validation statistics to confirm
that training and validation datasets produced interpolated maps
that varied within an acceptable range of the underlying variable
(Table S1).

Interpolated surfaces were summed to create two types of
integrated risk maps: a social/behavioral-ecological vulnerability
index map that sums the negative product of GPB and the PTD
raster map (i.e., ½−1×GPB�+PTD), and a prioritization index
map that sums the social/behavioral-ecological vulnerability
index map and the population-at-risk map (see Figure 1).

Association between Social-Behavioral and Ecological Risk
Factors with the Presence of Human Cases of Lyme Disease
We used logistic regression models to determine whether the esti-
mated social/behavioral-ecological vulnerability index for each
CSD and the estimated social/behavioral-ecological prioritization
index for each CSD was a significant predictor of the presence/
absence of LD cases at the CSD level. In addition, we modeled
associations between LD cases and the average social-behavioral
scores, PTD, and the human population density for each CSD.
This was done to determine which, if any, underlying variables
may be driving a significant relationship between LD presence/
absence and the social/behavioral-ecological vulnerability or pri-
oritization index.

We used available epidemiological data on confirmed and
probable human cases of LD [according to the case definition
reported in Montérégie at the CSD level in 2012 and 2013
(MSSS 2016b)]. A total of 69 locally acquired cases of LD
were reported from 37 of 179 CSD within Montérégie in 2012
and 2013, and cases with known travel history and possible ac-
quisition of LD outside of Quebec were not included in the
analysis. In both model formulations, the response variable of
human case presence, y=1, occurred for one or more LD cases
in a given CSD, while y=0 for no reported cases. In model for-
mulation 1, we modeled the presence/absence of LD cases in
each CSD as a function of individual predictors, including
PTD, human population density, and either GK and GRP or
GPB only (since it is a function of both GK and GRP) as T
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independent variables (models 1A, 1B, and 1C). In model for-
mulation 2, we modeled the social/behavioral-ecological vul-
nerability index for each CSD (model 2A) or the social/
behavioral-ecological prioritization index for each CSD (model
2B) in two separated models as the only predictors of the pres-
ence/absence of LD cases. In each model, explanatory varia-
bles were tested individually with a liberal cutoff of p<0:2 in
univariable model, and then we selected the most parsimonious
multivariable model through a process of forward and back-
ward substitution and elimination. The cutoff for keeping a
variable in the final model was p<0:05. Internal validity of the
final models was verified by visually assessing the linearity of
the predictors with the log odds of the outcome and the pattern
of residuals. The area under the receiver operating characteris-
tic curve was used as a measure of the predictive ability of the
model. The presence of residual spatial autocorrelation was
explored in posthoc analyses of residuals plotted as a function
of geographic distance for both model formulations (Dormann

et al. 2007). Finally, we used Pearson’s chi-square test to detect
significant differences in the proportion of respondents with
higher social-behavioral index scores at the CISSS level.
Statistical analyses were carried out using R (version 3.2.4; R
Development Core Team).

Results
Descriptive analysis of human LD cases (number and preva-
lence), human population density, social-behavioral risk meas-
ures (proportions of respondents with high GPB, GK, and GRP),
and ecological risk (PTD) at the CISSS level are presented in
Table 1. The geographic distribution of social-behavioral and ec-
ological risk data, point maps of the participants recruited in the
survey in 2012, and the field surveillance site locations visited in
Montérégie from 2007–2012 are illustrated in Figures 2 and 3.
The distribution of tick sampling sites provided good spatial cov-
erage of the study area for the population survey (Figures 2

Figure 2. Point map showing the distribution of locations of residence of survey participants in Montérégie in 2012 (n=379).
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and 3). Social-behavioral risk, human population density, and ec-
ological risk were all spatially heterogeneous (Figures 4–7 and
Table 1). In all maps, darker areas represented higher intensity of
the variable shown; however, the interpretation of the results in
terms of risk is the reverse for the social-behavioral risk factors
because a higher level of social-behavioral risk corresponds to
lower risk for LD.

Spatial Variation in Social-Behavioral and Ecological Risk
High predicted LD social-behavioral risk, corresponding to lower
adoption of preventive behaviors, was very heterogeneous, but
was particularly low within the CISSS Montérégie-Est and
CISSS Montérégie-Centre (Figure 4A and Table 1). The levels of
knowledge and risk perception were also heterogeneous across
all CISSSs (Figures 4B and 4C and Table 1). The lowest level of
knowledge was observed in CISSS Montérégie-Ouest, and the
lowest level of risk perception was observed in CISSS
Montérégie-Centre (Table 1). The highest human population

densities occur in northwestern part of the CISSS Montérégie-
Centre and the southwestern part of the CISSS Montérégie-Est.

The highest tick population densities were estimated to occur
in CISSS Montérégie-Centre, CISSS Estrie, and the southern part
of CISSS Montérégie-Est (Figure 5 and Table 1). Higher social/
behavioral-ecological vulnerability index values (Figure 6) and
prioritization index values (Figure 7) were also found in CISSS
Montérégie-Centre, CISSS Estrie, and the southern part of CISSS
Montérégie-Est, although the spatial extents were different given
that the prioritization index accounted for the density of the
human population at risk.

Association between Risks Factors and the Presence of
Human Lyme Disease Cases
Of the individual socio-behavioral risk scores, PTD, and human
population density, CSD-level PTD was the only statistically sig-
nificant predictor of CSD-level LD cases [Table 2, model 1C,
odds ratio ðORÞ=1:77; 95% confidence interval (CI): 1.28, 2.52;

Figure 3. Point map showing the distribution of the field surveillance site locations visited in Montérégie, 2007–2012 (n=378 site visits).
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Figure 4. Spatial variation in the level of (A) adoption of individual preventive behaviors (i.e., global preventive behavior score; GPB); (B) knowledge about
the disease (i.e., global knowledge score; GK); and (C) risk perceptions (i.e., global risk perception score; GRP). Darker areas represent higher index scores for
these social-behavioral drivers but a lower risk for Lyme disease risk transmission.
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and p=0:0009]. The combined social/behavioral-ecological vul-
nerability index was also a significant predictor of LD cases (Table
2, model 2A: OR=1:76; 95% CI: 1.25, 2.53; and p=0:002), but
the social/behavioral-ecological prioritization index (that also
accounts for human population density) was not (Table 2, model
2B: OR=1:08; 95% CI: 7.85, 1.52; and p=0:65).

The number of households surveyed ranged from 0–15 per
CSD, with a total of 99 CSD out of 179 CSD having at least one
respondent. The number of field site visits per CSD ranged from
0 to 11 site visits, with a total of 154 CSD out of 179 CSD having
at least one site-visit (Table 1). No significant differences in the
proportions of respondents with higher social-behavioral index
scores were detected among CISSSs.

Significant local spatial autocorrelation was found for each
social-behavioral risk index at the survey respondent level, as
illustrated by spatial clusters and spatial outliers maps (Figures
S1 to S3), although no significant global spatial autocorrelation
was detected in any of the social-behavioral variables. We
detected significant positive and negative clusters or outliers as
explained in supplemental materials. Our logistic regression mod-
eling approach adequately accounted for the spatial autocorrela-
tion given that this process was not detected from an assessment
of the residuals using the Moran’s I method (index value= 0:048,
z-score value= 1:02, and p=0:31 for both models).

The cross-validation statistics for assessing our interpolated
surfaces are presented in the supplemental materials (Table S1).

Discussion
To our knowledge, this study is the first to develop integrated
social/behavioral-ecological risk maps that can help target LD

interventions. Our findings illustrate heterogeneities in social-
behavioral and ecological risks within a newly endemic region
for LD that are significantly correlated with the spatial distribu-
tion of emerging human cases. Significant regional differences in
levels of LD knowledge and preventive behaviors have been
recently documented in Canada (Aenishaenslin et al. 2016,
2017), but our integration of this social-behavioral risk variation
with ecological risk allowed the combined effects of these factors
on risk to be directly assessed for the first time and mapped in
relation to emerging hotspots for human LD cases. The identifica-
tion of geographic hotspots of LD risk using this approach pro-
vides both useful targets for geographic prioritization of public
health interventions to address the areas and populations at great-
est risk, but also an assessment tool to examine of the relative
contribution of different types of risk factors across the emerging
landscape of LD risk.

In recent years, a number of new approaches have been applied
to help prioritize LD interventions, including decision-theoretic
approaches such as multicriteria decision analysis (Aenishaenslin
et al. 2015b; Hongoh et al. 2011). Although such approaches allow
the inclusion of multiple factors in the prioritization process,
such models tend not to take into account the spatial characteris-
tics and differences in LD risk across the targeted region. The cur-
rent study provides first steps in this direction by proposing
integrated social/behavioral-ecological risk maps that can be
used in different ways to inform public health authorities. First,
localities showing the highest levels of LD social/behavioral-
ecological risk can be prioritized for the implementation of pre-
vention or control strategies in a context of limited resources. For
example, based on our results, Longueuil CSD, located in the
southwestern part of the CISSS Montérégie-Est, as well as other

Figure 4. (Continued.)
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Figure 5. Spatial variation in the level of (A) population density based on the 2011 census, and (B) predicted tick density (PTD) based on ticks collected
through active field surveillance from 2007–2012. Darker areas represent a higher Lyme disease risk.
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CSDs located at the southern part of the CISSS Montérégie-
Centre near Lake Champlain and the border with the United
States, would be considered with a higher priority given the low
preventive behavior score, higher population density, and higher
predicted tick population density, which results in high social/
behavioral-ecological and prioritization index values (Figures
4–7 and Table 1). Secondly, the social-behavioral and ecological
risk maps can be interpreted individually to inform public health
decision-makers about which interventions to target in each
CSD. For example, if a CSD shows moderate levels of ecological
risk but low levels of knowledge and preventive behaviors, then
resources should be invested in risk communication to public and
health professionals.

Previous studies have found significant spatial associations
between ecological factors linked to tick population abundance
and LD risk (Eisen et al. 2006; Pepin et al. 2012; Eisen and Eisen
2016). We also found a statistically significant association
between tick density and LD case presence; however, we found
that LD case presence was not significantly associated with any
of the social-behavioral variables. We may not have had a suffi-
cient number of respondents at the CSD level to adequately rep-
resent the social-behavior risk factors of the local population.
Secondly, the administrative construct of CSD boundaries may
not be an appropriate spatial scale or geographically positioned in
a manner that captures the processes driving variation in social
behavior and LD exposure and risk leading to LD reports. The
impacts of this ecological bias and the related concept of the
modifiable areal unit problem on epidemiological analyses were
not explored in the current study. There may also be limitations
relating to the web survey design that prevent adequate character-
ization of the population-level social-behavior (Aenishaenslin

et al. 2014) and the fact that the social data were collected for
other purposes. Furthermore, the uneven distribution in respond-
ents (i.e., more respondents around Montreal area, Figure 2) can
lead to error in modeling and interpretation when scaling up data
from low-density areas compared to high-density areas if the sur-
vey data do not adequately capture the true variation across the
study area. There can also be an issue of overinterpreting the
interpolated maps. This method assumes that spatial variation is a
consequence of the spatial distribution of respondent locations
and does not take into account the potential for variation between
their locations.

An alternative method would be to create regression models
where LD cases are explained by social-behavioral, ecological
(tick density), and human population (density) variables and then
used the models to predict LD case presence given a denser and
more homogeneous distribution of covariate values. A similar
method was developed for the present analyses to produce the ec-
ological risk index (PTD) for each site location, which was then
interpolated and visually validated with unpublished and pub-
lished maps (Unpublished data, 2018; Leighton et al. 2012).
However, it was not possible to apply this approach for the
social-behavioral risk data in this study given that collection and
analysis of survey data for LD in the study region was only car-
ried out in a single year using a cross-sectional design that does
not allow validation of multiannual regression models. Moreover,
given that there is evidence of rapid changes in LD awareness
across Canada based on two national surveys conducted in 2014
(Aenishaenslin et al. 2016), the development of social-behavioral
risk maps should be repeated and adapted over time.

LD is still considered as a newly endemic disease in southern
Québec, and the levels of knowledge and preventive behaviors in

Figure 6. Social/behavioral-ecological vulnerability index map. Darker areas represent a higher Lyme disease risk based on the global preventive behavior
score and the predicted tick density (PTD).
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the Montérégie region are low overall despite some geographical
heterogeneity (under 20% of the population had a high level of
knowledge, Table 1). Our results suggest that in our study area, ec-
ological risk is a major driver of LD human cases, an observation
that fits with its emerging epidemiological status, but that could be
expected to change as epidemiological context evolves. CISSS
Estrie had the highest number of human cases per capita, which
could be explained by the high level of ecological risk, even though
relatively high levels of adoption of preventive behavior and risk
perception were observed. Further studies comparing the relative
importance of social-behavioral and ecological risks in emerging

vs. highly endemic regions would be needed to confirm these pat-
terns and better understand the role of knowledge, risk perception,
and preventive behaviors in modulating the impact of emerging ec-
ological risk on regional case incidence.

We caution not to overinterpret our results from using only
one level of adopting preventive behaviors to estimate the level
of social-behavioral risk for LD. The types of social risk factors
that may contribute to increase the risk of contracting LD are
multiple. For example, risk behaviors, culture, and values all are
known to have impacts on health issues and could also be geo-
graphically heterogeneous (Rosenstock et al. 1988), but were not

Figure 7. Prioritization index risk map. Darker areas represent a higher Lyme disease risk based on the social/behavioral-ecological vulnerability index and the
human population at risk.

Table 2. Odds ratios (95% CI) and p-values for the presence/absence of LD cases in a census subdivision (CSD) as a function of individual predictors,
including social-behavioral risk factors (either GK and GRP or GPB only), predicted tick density, and population density (model 1A–1C) or as a function
of social-behavioral vulnerability index (model 2A) and prioritization index (model 2B).

Model formulation Model 1A Model 1B Model 1C Model 2A Model 2B

CSD-level predictor OR (95% CI)
p-

value OR (95% CI)
p-

value OR (95% CI)
p-

value OR (95% CI)
p-

value OR (95% CI)
p-

value

Global knowledge score
(GK)

0.87 (0.57, 1.29) 0.52 – – – – – – – –

Global risk perception
score (GRP)

0.92 (0.63, 1.35) 0.68 – – – – – – – –

Global preventive behavior
score (GPB)

– – 087 (0.59, 1.26) 0.46 – – – – – –

Predicted tick density (PTD) 1.75 (1.25, 2.51) 0.002 1.76 (1.25, 2.54) 0.002 1.77 (1.28, 2.52) 0.0009 – – – –
Population density 0.66 (0.34, 1.06) 0.15 0.66 (0.34, 1.08) 0.16 – – – – – –
Social/behavioral-ecological
vulnerability index

– – – – – – 1.76 (1.25, 2.53) 0.002 – –

Social/behavioral-ecological
prioritization index

– – – – – – – – 1.08 (0.75, 1.52) 0.65

Note: Area under the curve (AUC) values were 0.70, 0.70, 0.67, 0.62, and 0.55 for models 1A, 1B, 1C, 2A, and 2B, respectively. –, is if a predictor was not included in the model for-
mulation x; CI, confidence interval; OR, odds ratio.
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measured in the survey. For LD, very few studies have addressed
these factors and have tried to quantify their relative importance.
Data collection and data access to these different layers of informa-
tion can be a limit. Surveillance of human behavior to a particular
infectious disease is not easily found, and this could limit and
decrease the speed of future work investigating those social-
behavioral risks and their influence on the risk of infection. Further
research on the social determinants of this disease is needed in
order to improve this work and methodology.

Conclusions
This current study is a first step towards an integrated approach
for LD risk assessment, identifying social-behavioral risk factors
that act jointly with ecological risk factors to influence manage-
ment of this emerging tick-borne disease. This study highlights a
new area for research on the development and validation of inte-
grated social/behavioral-ecological risk maps. The approach devel-
oped here is widely applicable to other vector-borne or zoonotic
diseases and to different epidemiological contexts where the geo-
graphic patterns of risk are driven by the interplay between social-
behavioral and ecological factors.
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